對于“大數據”(Big data)研究機構Gartner給出了這樣的定義?!按髷祿笔切枰绿幚砟J讲拍芫哂懈鼜姷臎Q策力、洞察發(fā)現力和流程優(yōu)化能力來適應海量、高增長率和多樣化的信息資產。
[麥肯錫全球研究所給出的定義是:一種規(guī)模大到在獲取、存儲、管理、分析方面大大超出了傳統(tǒng)數據庫軟件工具能力范圍的數據集合,具有海量的數據規(guī)模、快速的數據流轉、多樣的數據類型和價值密度低四大特征。
大數據技術的戰(zhàn)略意義不在于掌握龐大的數據信息,而在于對這些含有意義的數據進行專業(yè)化處理。換而言之,如果把大數據比作一種產業(yè),那么這種產業(yè)實現盈利的關鍵,在于提高對數據的“加工能力”,通過“加工”實現數據的“增值”。[5] 從技術上看,大數據與云計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單臺的計算機進行處理,必須采用分布式架構。它的特色在于對海量數據進行分布式數據挖掘。但它必須依托云計算的分布式處理、分布式數據庫和云存儲、虛擬化技術。
隨著云時代的來臨,大數據(Big data)也吸引了越來越多的關注。分析師團隊認為,大數據(Big data)通常用來形容一個公司創(chuàng)造的大量非結構化數據和半結構化數據,這些數據在下載到關系型數據庫用于分析時會花費過多時間和金錢。大數據分析常和云計算聯系到一起,因為實時的大型數據集分析需要像MapReduce一樣的框架來向數十、數百或甚至數千的電腦分配工作。大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用于大數據的技術,包括大規(guī)模并行處理(MPP)數據庫、數據挖掘、分布式文件系統(tǒng)、分布式數據庫、云計算平臺、互聯網和可擴展的存儲系統(tǒng)。最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。它們按照進率1024(2的十次方)
來計算:1 Byte =8 bit
1 KB = 1,024 Bytes = 8192 bit
1 MB = 1,024 KB = 1,048,576 Bytes
1 GB = 1,024 MB = 1,048,576 KB
1 TB = 1,024 GB = 1,048,576 MB
1 PB = 1,024 TB = 1,048,576 GB
1 EB = 1,024 PB = 1,048,576 TB
1 ZB = 1,024 EB = 1,048,576 PB
1 YB = 1,024 ZB = 1,048,576 EB
1 BB = 1,024 YB = 1,048,576 ZB
1 NB = 1,024 BB = 1,048,576 YB
1 DB = 1,024 NB = 1,048,576 BB
全稱:1 Bit(比特) =Binary Digit8Bits = 1 Byte(字節(jié))1,000 Bytes = 1 Kilobyte1,000Kilobytes = 1 Megabyte1,000 Megabytes = 1 Gigabyte1,000 Gigabytes = 1Terabyte1,000 Terabytes = 1 Petabyte1,000 Petabytes = 1 Exabyte1,000Exabytes = 1 Zettabyte1,000 Zettabytes = 1 Yottabyte1,000 Yottabytes = 1Brontobyte1,000 Brontobytes = 1 Geopbyte[6]